
SAE Aero Micro Presentation 3: Final Design Proposal

NAU Capstone 2019-2020: The Prop Dogs Corbin Miller, Eli Perleberg, and Zach Simmons 11/5/19

Agenda

- 1. Project review and description
- 2. Design description, CAD model, and prototype
- 3. Subsystem-level designs
 - a. Drive
 - b. Fuselage
 - c. Wing
 - d. Landing gear
 - e. In-flight control
- 4. Design requirement satisfaction
- 5. Design validation and future testing
- 6. Updated BOM and schedule

Eli

Project Review & Description

SAE Aero Micro Class Design: April 3-5, 2020 in Fort Worth, TX

Design process to date:

- Literature Review
- State of the Art Design
- CRs, ERs, and QFD
- Initial Budget and Schedule
- Functional Decomposition: Black Box and Functional Model

- Concept Generation: Methodology and Subsystems
- Subsystem Variants
- Designs Considered
- Concept Evaluation: Pugh Chart & Decision Matrix
- Concept Selection
- Budget Planning

Design Description: Current State Model

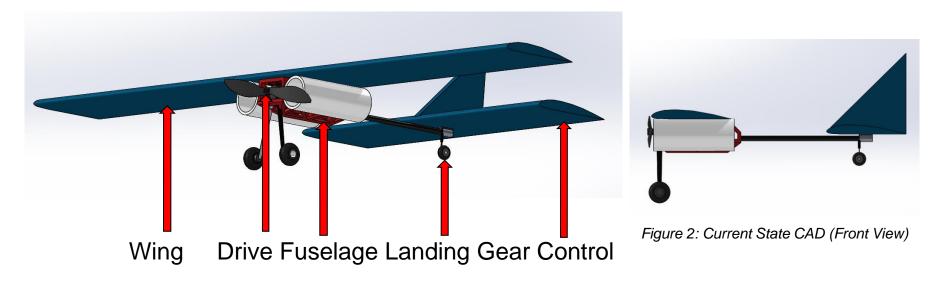


Figure 1: Current State CAD (ISO View)

Table 1: Current State Model

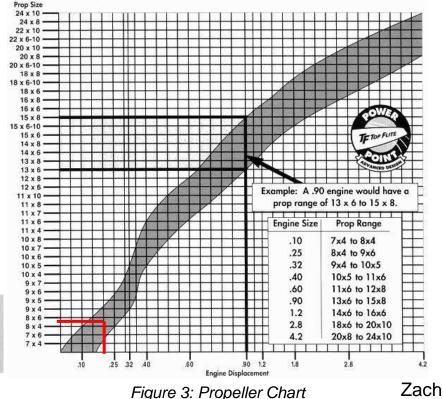
Subdesign	Implementation Details
Drive	Propeller, motor, ESC, battery, wiring
Fuselage	Frame geometry and material, drive housing, carbon fiber rod, PVC payload
Wing	Airfoil selection, chord length, wingspan, aspect ratio, material
Landing Gear	Geometry, material
In-Flight Control	Linkages, motors, receiver, controller

Drive Design

$\textbf{Propeller} \rightarrow \textbf{Motor} \rightarrow \textbf{Electronic Speed Controller (ESC)} \rightarrow \textbf{Battery}$

1 glow equiv. = 2000W

 $\sim \frac{100W}{lb}$ needed to fly


Assume All Up Weight = 4 lb

400W needed = 0.2 glow equiv.

Given prop chart→ 8x4 or 8x6 prop Selected propeller: APC Electric 8x4.7 SF

Figure 4: APC Electric 8x4.7 SF

Drive Design

Propeller→ Motor→ Electronic Speed Controller (ESC)→ Battery

Airplane					
Wing Type: Monoplane	All-Up-Weight: 1701 g 60 oz	Wingspan: 1270 mm 50 inch	Wing Area: 12.9 dm ² 200 in ²	Lift Coefficient (CI): 1 Vs: 54km/h - 33mph	Cooling: good v
desired Performance					
Flight Mission: Slowflyer Factors: S x2.75, T x1, P x0.4	•	Speed: 48.3 km/h 30 mph 148km/h - 92mph	Thrust: 1701 g 60 oz 1701g - 60oz	Flight Time: 1 min	
Battery Cell Configuration: 3 S	Voltage: LIPo - 3.7V		Air Temperature:	Field Elevation: 198 m.ASL 650 ft.ASL	
Motor # of Motors: 1	Gear Ratio:	max. Weight:	Propeller max. Diameter: () 8 inch 4.89.5inch	Pitch:	# Blades:

Table 2: Motor Selection

Propeller	Motor	ку	ESC	Battery	Current	Spe	ed	Thr	ust
inch		rpm/V	A+		А	km/h	mph 🔺	g	oz
8×5.0	NeuMotors 1509/3 75D TL4	1760	55	2600mAb - 20C (3s1p)	41	118	73	1649	58.2
8x5.0	Scorpion HK-2520-1880	1880	60	2800mAh - 20C (3s1p)	44	117	73	1632	57.6
8x4.7	Mega Motor ACn 22/30/2	1920	65	3000mAh - 20C (3s1p)	49	117	73	1733	61.1
8x4.75	Mega Motor ACn 22/30/2	1920	65	3000mAh - 20C (3s1p)	49	118	73	1745	61.6
8x5.25	Leomotion L3025-1800-V2	1820	55	2600mAh - 20C (3s1p)	40	118	73	1593	56.2

Begin with trusted manufacturer: Scorpion Power System

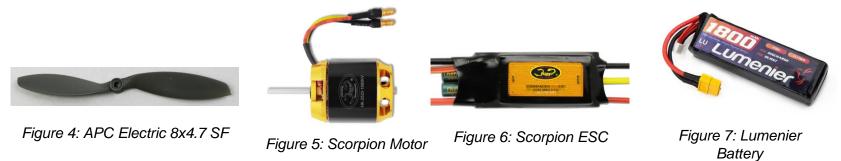
Selected Motor: Scorpion HK-2520-1880

- High Energy-to-weight ratio
- Brushless motor
- 800W max power
- Scorpion ESC compatible

Figure 5: Scorpion Motor

Drive Design

Propeller→ Motor→ Electronic Speed Controller (ESC)→ Battery


General	Model Weight:	# of Motors:	Wing Area:	Drag:	Cross Section:	Field Elevation:	Air Temperature:	Pressure (QNH):
	1417 g incl. Drive V	1	12.9 dm ²	simplified •	0 dm ²	305 m.ASL	25 °C	1013 hPa
	50 oz	(on same Battery)	200 in ²	0.05 Cd	0 in ²	1001 ft.ASL	77 °F	29.91 inHg
Battery Cell	Type (Cont. / max. C) - charge state:	Configuration:	Cell Capacity:	max. discharge:	Resistance:	Voltage:	C-Rate:	Weight:
	LiPo 1800mAh - 35/50C 🔹 - normal 🔻	3 S 1 P	1800 mAh	85% 🔻	0.0081 Ohm	3.7 V	35 C cont.	46 g
			1800 mAh total				50 C max	1.6 oz
Controller	Type:	Current:	Resistance:	Weight:	Battery extension Wire:	Length:	Motor extension Wire:	Length:
	Scorpion Commander 45A SBEC V3 V	45 A cont.	0.00233 Ohm	44 g	AWG10=5.27mm ² ▼	0mm	AWG10=5.27mm ² V	0mm
		45 A max		1.6 oz		0 inch		0 inch
Motor N	Manufacturer - Type (Kv) - Cooling:	KV (w/o torque):	no-load Current:	Limit (up to 15s):	Resistance:	Case Length:	# mag. Poles:	Weight:
	Scorpion • - HK-2520-1880 (1880) •	1880 rpm/V	2.25 A @ 10 V	1050 W 🔻	0.026 Ohm	40 mm	10	104 g
	good v search	Prop-Kv-Wizard				1.57 inch		3.7 oz
Propeller	Type - yoke twist:	Diameter:	Pitch:	# Blades:	PConst / TConst:	Gear Ratio:	Flight Speed:	
	APC Electric E V - 0° V	8 inch	4.7 inch	2	1.08 / 1.0	1 :1	0 km/h	calculate
		203.2 mm	119.4 mm				0 mph	
/				ALT TO		1 1		1
	40	1000		40 80		2	50	100
							C kr	m/h
-			-		-			
	0 80 0 20	416.6	00	0 120		3		150
	23.17 3.9	416.6	/	48	1	1.19	1	14
	Load: Mixed Flight Time:	electric Pow	ver:	est. Temperature:	Th	rust-Weight:	Pitch	Speed:

Selected ESC: Scorpion Commander 15V 45A ESC w/SBEC Selected Battery: Lumenier 1800mAh 3-cell 35c Lipo Battery

Drive Selection

Table 3: Drive Selection

Drive Part	Brand/Model	Size	Weight (oz)	Cost (\$)
Prop	APC Electric SF 8x4.7	8" dia x 4.7" pitch	0.25	2.45
Motor	Scorpion HK-2520-1880KV	1" dia, 0.8" length (0.63 in^3)	3.64	80.00
ESC	Scorpion Commander 15V 45A ESC SBEC (V3)	2.83"x1.18"x0.32" (1.06 in^3)	1.55	60.00
Battery	Lumenier 1800mAh 3s 35c Lipo Battery	4.1"x1.34"x0.79" (4.34 in^3)	4.94	20.00
Total		6.03 in^3	10.38	162.45

Fuselage Design

Primary functions:

- House drive components and wiring
- Connect with wing assembly
- Connect with landing gear
- Support loading upon landing
- Hold entire plane together

Components:

- Frame
- Drive housing
- Cover material
- Carbon fiber rod
- PVC payload

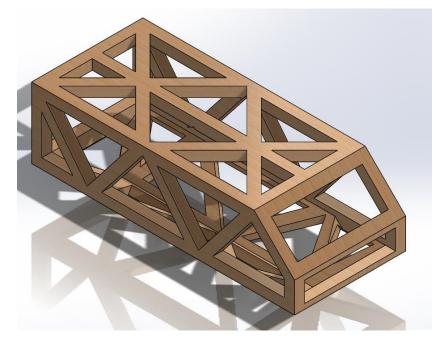


Figure 8: Fuselage Frame

Fuselage Material Selection

<u>Balsa:</u>

- High manufacture time
- Low manufacture accuracy
- Low density \rightarrow low weight (0.03 lb total)
- Low yield strength (20 MPa)

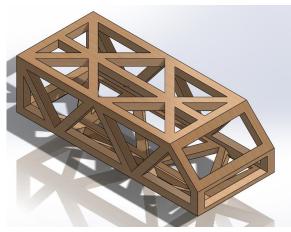


Figure 9: Balsa Frame

ABS:

- Low manufacture time, rapid prototyping
- High manufacture accuracy
- High density \rightarrow more weight (0.22 lb total)
- Moderate yield strength (40 MPa)

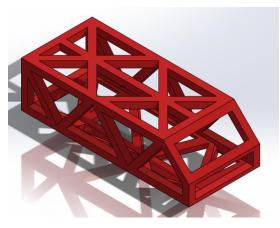
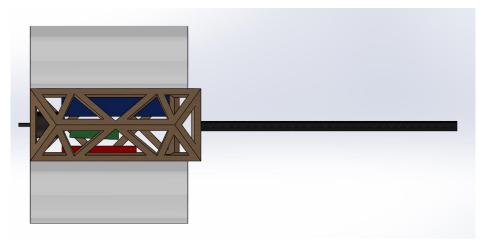


Figure 10: ABS Frame


Selected material→ ABS

Fuselage Design

CAD model

- Verify carbon fiber rod and payload mounting
- Verify motor, ESC, battery, and receiver storage

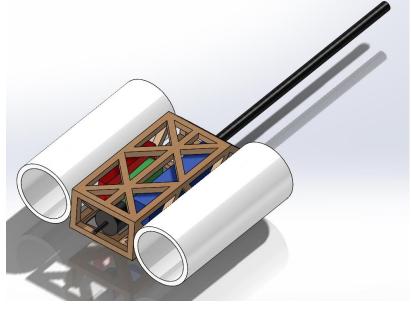


Figure 11: Fuselage Assembly (Top)

Figure 12: Fuselage Assembly (Bottom)

Wing Design

Airfoil Design

- Clark Y Airfoil
 - Provides a smooth stall entry for RC plane
 - Flat bottom, simple for manufacturing, but provides a sufficient amount of lift
 - Square planform area
- Airfoil modifications
 - Ailerons with a rectangular wing: easier and faster
- Wing Materials:
 - Balsa Wood frame and exterior

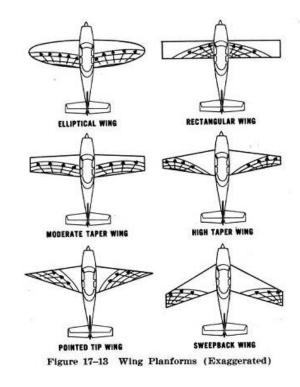


Figure 13: Airfoil Wing Design

Eli

Wing Design

Wing Calculations

- Wingspan = 52 inches
- Chord Length = 5.9 inches
- Planform Area = 306.8 squared inches
- Aspect Ratio = 8.814

Balsa:

- High manufacture time
- Readily available
- Low density→ low weight

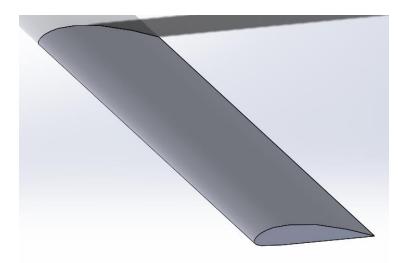


Figure 14: Airfoil Wing Design

Landing Gear Design

Tail Dragger Design

- Two base wheels with an additional supporting wheel
- 3-4 inch height
- RC wheels that have an outer diameter of 1-1.5 inches

Landing Gear Material

Aluminum AlloysRods or Thin connectors

Figure 15: Ideal Aircraft

Figure 16: Front Wheeled Design

Figure 17: Tail Dragger

Eli

In-Flight Control Design

Primary functions:

- Maneuver plane through sky
- Increase/decrease altitude

Components:

- Servo Motors
- Shafts
- Tabs

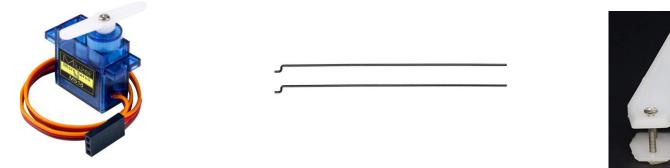


Figure 18: Miuzei 10 pcs SG90 9G ServoFigure 19: 10 pcs push and pullMotor Kit\$18.00 amazonrods\$5.00 amazon

Figure 20: 10 pcs control horns

\$5.00 amazon

SAE INTERNATIONAL

Design Requirements: CRs

Table 4: Customer Requirements

Gross Weight Limit (10 lbs)
In-flight radio control (2.4 GHz) w/ fail safe
wheeled landing gear steering mechanism
Payload cannot aid frame integrity
Payload attached w/ metal hardware
Electric motor/Servo
Red arming plug
3 cell 2200mAh lithium polymer battery
gyroscopic assist allowed
ASTM D1785 PVC Payload weights
Hand launch
12.125 in X 3.625 in X 13.875 in container
3 min assembly
1 min to energize, check, and launch
fly for 400-foot leg of a flight circuit
cost within budget
durable and robust design
reliable design
safe to operate

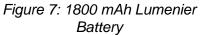


Figure 21: Metal Snaps

K-2520-1880KV

Figure 5: Scorpion Motor

wixed Flight fille.

Figure 22: Estimated Flight time from Ecalc

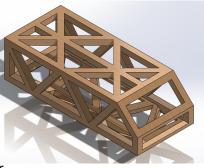


Figure 8: Fuselage Design

Figure 23: Safety Precaution Corbin

Design Requirements: ERs

Table 5: Engineering Requirements

Criteria (ERs)	Power needed to $fly = 400 W$	(1)
Frequency (GHz)	Max Motor Power = 800 W	(2)
Power (Watts)		
Weight (lbs)	All Up Weight (AUW) = 4 lb	(3)
Time (seconds)	Max Weight Allowed = 10 lb	(4)
Capacity (mAh)	Max weight Allowea = 10 lb	(4)
Storage Volume (in^3)		
Length (inch)	Max Battery Capacity = 2200 mAh	(5)
Current (Amperes)	Design Battery Capacity = 1800 mAh	(6)
Angle (deg)		
Acceleration (feet/second^2)	Fuselage Storage Volume = 2.25 in $\times 6in \times 2in = 27in^3$	(7)
Angular Velocity (degrees/sec)	Used Space Within Fuselage = 6.03 in^3	(8)
Angular Speed (rpm)		(-)
Lift (lb)	27	
Thrust (lb)	Specific Thrust = $.20 \frac{oz}{W}$	(9)
Cost (\$)	<i>Optimum Motor Output</i> = 280 <i>W</i>	(10)
Toughness (in*lb/in^2)	Thrust Genereated = Specific Thrust * Optimum Motor Output = 56 oz	(11)
	AUW = 60 oz	(12)
	$Thrust: Weight = \frac{Thrust}{AUW} = 0.93$	(13)

Table 6: Equation References

Equation	Source
1	Ecalc
2	Scorpion site
3	Benchmarking NAU
4	SAE rules
5	SAE rules
6	Ecalc
7	
8	
9	Ecalc
10	Ecalc
11	Ecalc
12	Benchmarking NAU
13	Ecalc

Corbin

Design Validation FMEA: Risk Tradeoff

- 1. Incapable of generating thrust
- 2. Aircraft loses altitude
- 3. lack of control and aerodynamics
- 4. Plane landing on underbelly
- 5. Battery/Motor will combust
- 6. Motor will smoke and overheat

Table 7: Failure Mode and Effects Analysis

	Prop Dogs			Page No of								
		FMEA Number										
]							4-Nov-19				
Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Causes and Mechanisms of Failure	causes and Occurance Design			RPN	Recommended Action				
Crack	Aircraft falling out of the sky	y 5 Tolerance Buildup		8		4	4 160 Revise Test Plan					
Brittle Fracture	Debris falling from the sky	7	Poor maintenance	3		3	63	Revise Test Plan				
Crack/Fracture	Aircraft falling out of the sky	7	Assembly/Building Errors	4		3	84	Revised Subassembly design				
Buckling	Shrapnel flying when landing	5	Assembly errors/Lack of testing	5		7	175	Revised Subassembly design				
Over Amperage/Voltage	Aircraft on fire	8	User Error (preflight)	2		5	80	Replace parts				
Overload	Aileron Malfunction	3 User Error (preflight)		3		2	18	Replace parts				
	Crack Brittle Fracture Crack/Fracture Buckling Over Amperage/Voltage	Crack Aircraft falling out of the sky Brittle Fracture Debris falling from the sky Crack/Fracture Aircraft falling out of the sky Buckling Shrapnel flying when landing Over Amperage/Voltage Aircraft on fire	Potential Failure Mode Potential Effect(s) of Failure Severity (S) Crack Aircraft falling out of the sky 5 Brittle Fracture Debris falling from the sky 7 Crack/Fracture Aircraft falling out of the sky 7 Buckling Shrapnel flying when landing 5 Over Amperage/Voltage Aircraft on fire 8	Potential Failure Mode Potential Effect(s) of Failure Severity (S) Potential Causes and Mechanisms of Failure Crack Aircraft falling out of the sky 5 Tolerance Buildup Brittle Fracture Debris falling from the sky 7 Poor maintenance Crack/Fracture Aircraft falling out of the sky 7 Assembly/Building Errors Buckling Shrapnel flying when landing 5 Assembly errors/Lack of testing Over Amperage/Voltage Aircraft on fire 8 User Error (preflight)	Potential Failure Mode Potential Effect(s) of Failure Severity (S) Potential Causes and Mechanisms of Failure Occurance (O) Crack Aircraft falling out of the sky 5 Tolerance Buildup 8 Brittle Fracture Debris falling from the sky 7 Poor maintenance 3 Crack/Fracture Aircraft falling out of the sky 7 Assembly/Building Errors 4 Buckling Shrapnel flying when landing 5 Assembly errors/Lack of testing 5 Over Amperage/Voltage Aircraft on fire 8 User Error (preflight) 2	FMEA Number Potential Failure Mode Potential Effect(s) of Failure Severity (S) Potential Causes and Mechanisms of Failure Occurance (O) Current Design Controls Test Crack Aircraft falling out of the sky 5 Tolerance Buildup 8 Brittle Fracture Debris falling from the sky 7 Poor maintenance 3 Crack/Fracture Aircraft falling out of the sky 7 Assembly/Building Errors 4 Buckling Shrapnel flying when landing 5 Assembly errors/Lack of testing 5 Over Amperage/Voltage Aircraft on fire 8 User Error (preflight) 2	FMEA Number FMEA Number Potential Failure Mode Potential Effect(s) of Failure Severity (S) Potential Causes and Mechanisms of Failure Occurance (O) Current Design Controls Test Detection (D) Crack Aircraft falling out of the sky 5 Tolerance Buildup 8 4 Brittle Fracture Debris falling from the sky 7 Poor maintenance 3 33 Crack/Fracture Aircraft falling out of the sky 7 Assembly/Building Errors 4 33 Buckling Shrapnel flying when landing 5 Assembly errors/Lack of testing 5 7 Over Amperage/Voltage Aircraft on fire 8 User Error (preflight) 2 5	FMEA Number FMEA Number Potential Failure Mode Potential Effect(s) of Failure Severity (S) Potential Causes and Mechanisms of Failure Occurance (O) Current Design Controls Test Detection (D) RPN Crack Aircraft falling out of the sky 5 Tolerance Buildup 8 4 160 Brittle Fracture Debris falling from the sky 7 Poor maintenance 3 3 63 Crack/Fracture Aircraft falling out of the sky 7 Poor maintenance 3 3 63 Buckling Shrapnel flying when landing 5 Assembly/Building Errors 4 3 84 Over Amperage/Voltage Aircraft on fire 8 User Error (preflight) 2 5 80				

Risk FMEA: Future Testing

Future Testing:

- Testing the Stress and Strain
 - landing gear, aileron mechanisms, and wing frame
- Running the drive system
 - Wheeled base with a propellor (aircraft on the ground)
 - Ground checks of ailerons
- Experimentation of flight
 - Flying prototypes to prevent failure in the fuselage and frame
- Airfoil experimentation
 - \circ \quad Justifying that the airfoil is ideal for our design

Resources and equipment

Soils lab (measuring devices) and 98C (wind tunnel)

Table 7a: Failure Mode and Effects Analysis

Part # and Functions	RPN	Recommended Action
#1: Propellor	160	Revise Test Plan
#6: Fuselage	63	Revise Test Plan
#5: Wings	84	Revised Subassembly design
#6: Lower Fuselage Frame/Landing Gear	175	Revised Subassembly design
#12: ESC	80	Replace parts
#4: Servo Motor	18	Replace parts

Eli

Bill of Materials (BOM) and Budget

Table 8: Bill of Materials

				Bill of Materials			
	Team	: Pro	op Dogs				
Part #	Part Name	Material	Dimensions	Cost (\$)			
1	Propeller	1	APC Electric Sf 8x4.7	Creates thrust	Plastic	8" diameter	2.45
2	Electric Motor	1	Scorpion HK-2520-1880 KV	rotates the propeller	Aluminum	1"x.8" (Cylindrical)	80
3	RC Controller/Receiver	1	Black controller	Controls the electrical components	Plastic, Metal, electrical Wirin	6"x6"	230
4	Servo Motor	3	Miuzei SG90	Converts the Mechanical motion into digita	Plastics, and metal	1"x1" and 8" wire	11.95
5	Wing Frame	2	Small stick components for the frame	Creates Lift	Balsa Wood	1/8" x 1/8" x 36"	19.18
6	Fuselage Frame	1	Thin curved wood	Creates lift/holds payload	Balsa Wood	300x200x1.5mm	12
7	Snaps	10	Metal fasteners	Connects the parts of the plane	Plastic	Diameter = 7/16"	7.99
8	Air Foil (Shrink wrap, tape)	1	Film	Creates an aerodynamic design	Polyethylene	2"x180'	11
9	Wiring	1	Thin, copper wiring	Actuates the Electrical Components	Copper/Aluminum	75"	5.91
10	Battery	1	Lumenier 1800mAh Lipo Battery	Stores Voltage	Plastic, Metal, electrical Wirin	4.1"x1.34"x.079"	20
11	Adhesive	1	Glue	Holds the internal frame in place	glue	N/A	
12	ESC	1	Scorpion Commander 15V 45A	Trasnmits appropriate Amperage to Motors	Plastic, Metal, electrical Wirin	2.83"x1.18"x0.32"	60
13	PVC Pipe	1	Payload PVC	Payload	PVC	2"D x 12"	9.25
14	Wheels	3	Small rotating wheels	Prevents plane from crashing when landing	rubber/metal	3" outer D	4.56

Total allowance: \$2000 Cost of registration: \$1100 Total cost \$474.29 Funds remaining \$425.71

SAE INTERNATIONAL

Schedule and Important Dates

	0	Name	Duration	Start	Finish	Nov	3 - Nov 9	9'19		No	lov 10 - I	Nov 16	19		Nov 1	7 - Nov	23 19		N	ov 24 -	Nov 30	19		Dec	- Dec	7'19		D	ec 8 - D	lec 14 '19
		wanie	Duration	Start	FILISH	S	MT	WT	F S	s s	S M	T W	T	S	S I	TN	W	F	S	S M	TW	T	FS	S	MT	W	FF	S S	ŝ M	T W
1		Customer Needs	2days	09/16/2019	09/17/2019																									
2		Engineering Requirements	2days	09/16/2019	09/17/2019																									
3		Project Description	2days	09/16/2019	09/17/2019																									
4		Background	2days	09/16/2019	09/17/2019																									
5		Literature Review	2days	09/16/2019	09/17/2019																									
6	1	Schedule	2days	09/16/2019	09/17/2019																									
7	**	Budget	2days	09/16/2019	09/17/2019																									
8		Benchmarking	2days	09/16/2019	09/17/2019																									
9	1	Concept Generation	11days	09/17/2019	10/01/2019																									
10	1	Concept Evaluation	6days	10/01/2019	10/08/2019																									
11		Budget Planning	16days	09/17/2019	10/08/2019																									
12	**	Prototype	9days	10/08/2019	10/18/2019																									
13		Preliminary Report	9days	10/08/2019	10/18/2019																									
14	1	Analyses Team Memo	6days	10/18/2019	10/25/2019																									
15		Website Check 1	6days	10/25/2019	11/01/2019																									
16		CAD package	21days	10/08/2019	11/05/2019	-																								
17	13	BOM	12days	10/21/2019	11/05/2019	-	8																							
18		Design Validation	12days	10/21/2019	11/05/2019	-																								
19	1	Design Requirements	12days	10/21/2019	11/05/2019																									
20	1	Schedule for next Semester	7days	10/28/2019	11/05/2019					1																				
21	00 15	Budget for next Semester	7days	10/28/2019	11/05/2019																									
22	**	Final Report	11days?	11/01/2019	11/15/2019					1																				
23		Final BOM/Cad package	21days?	10/31/2019	11/28/2019	-					1115. 1116											-								
24	1	Final Prototype	16days?	11/14/2019	12/05/2019													_	-				-							
25	**	Website check 2	6days?	11/29/2019	12/06/2019																	13		1						
26		Analytical report	11days?	11/26/2019	12/10/2019																-			-			_	-		-

Corbin

